All About 5G: Understanding 5G based on Data and Technology

Preface

In my previous article, “FAQs about 5G”, I discussed about some of the most frequently asked questions about 5G. Even though this article was authored not long ago, I’m certain that the 5G development in China has achieved many significant breakthroughs since then. After taking the technical seminar “Technology Has Something to Say,” I prepared this article to share some new ideas and best practices about 5G. You can take it as a continuation of my previous article, FAQs about 5G.

Understanding 5G Based on Statistics

Statistics (1): Unstable 5G User Experience

At the sixth World Internet Conference held in Wuzhen, Zhejiang, 5G was a hot topic discussed by the attendees. Lei Jun, CEO of Xiaomi, used “SpeedTest” to test the speed of the 5G network at the conference venue. According to the following speed test results that I captured from Lei Jun’s Weibo, the download speeds on the 5G network varies significantly from 81.5 Mbit/s to 787 Mbit/s. The speed difference is so large that it will affect the business performance of services deployed on this network, but even 81.5 Mbit/s, the lowest download speed shown on Lei Jun’s Weibo, is much faster than many existing 4G networks. Whether it is slow or fast depends on how you define a weak network. After all, the lowest download speed in a 4G network could also be the highest in a 3G network.

Statistics (2): Sharp Increase in 5G Subscribers

South Korea was the first country in the world to put 5G technology into commercial use. It officially started 5G services at the beginning of 2019. Their statistics can provide us with some references. First, look at some statistics from South Korea:

  • Average monthly data traffic of 27 GB (5G subscribers) compared to 9 GB (4G subscriber)

Statistics (3): Low Costs for 4G-to-5G Upgrade in the Consumer Market

To make the 4G-to-5G upgrade easier for subscribers, Chinese telecom operators inherited their practices from the 3G-to-4G upgrade. To enjoy 5G services, Chinese subscribers only need to change their devices. They do not need to change their SIM/UIM cards, phone numbers, or data plans. Technically speaking, replacing 4G SIM/UIM cards with 5G ones is necessary to implement new security mechanisms. However, they gave up the approach of replacing SIM/UIM cards to encourage more subscribers to upgrade to 5G. In this approach, the only cost for the upgrade is the cost of their devices. How much does a 5G device cost? On December 10, 2019, Xiaomi launched their new 5G phone for CNY 1,999 (USD 286). This is the first time a 5G phone was sold cheaper than CNY 2,000.

Statistics (4): Huge Investments in 5G Infrastructure Construction

Most subscribers care about when 5G networks would cover areas where they live, travel, and work. Specifically, they want to know when seamless 5G coverage or the same level of coverage provided by 4G networks will be available. Essentially, this question is about the number of 5G cell towers that must be built in China. By the end of 2019, China had more than 5 million 4G cell towers, which is about half of the total number of 4G cell towers worldwide. We spent six years building them. 5G uses higher frequency bands than 4G but transfers information within a shorter distance. To achieve the same level of coverage as 4G networks, we need twice or three times the number of 4G cell towers; about 10 million 5G cell towers. Let’s look at the following industry analysis report prepared by two security companies to get a basic idea about the construction period of 5G networks.

  • All prefecture-level cities will be covered by 5G networks by the end of 2020.
  • 50% of mobile phone owners in China will be 5G subscribers by the end of 2025.
  • 4G and 5G networks will coexist for the next five to ten years.

Understanding 5G from a Technical Perspective

Technical Perspective (1): 5G Standards

The International Telecommunication Union (ITU) issued the International Mobile Telecommunications-2020 (IMT-2020 Standard) requirements for 5G networks and defined some network metrics as shown in the diagram on the left side of the following figure. These metrics are mapped to three well-known categories of 5G New Radio (NR) use cases defined by the 3rd Generation Partnership Project (3GPP): enhanced Mobile Broadband (eMBB), Ultra Reliable Low Latency Communications (URLLC), and massive Machine Type Communications (mMTC).

Technical Perspective (2): Architectural Changes

Architecture is the first thing to consider for both services and networks. Knowing the architecture of a 5G network allows us to focus our research on the target problems from a broad view. Some of you may not be familiar with the architecture of cellular networks, but you may have some basic ideas about 4G. Let’s look at the architectures of 4G and 5G networks to see what changes 5G brings to 4G.

Technical Perspective (3): Network Slicing

What excites Telecom operators in the 5G era is how they can provide diversified services for more customers in different scenarios, not only network access services. Among the three major categories of 5G use cases I mentioned earlier, only eMBB is consumer-oriented. Each of the three categories covers many use cases in different industries. How does a single network serve all of these business requirements? The concept of network slicing is proposed to make sure the 5G network can meet your SLA requirements.

Technical Perspective (4): Edge Computing

In the 5G era, operators provide network slicing and edge computing services. First of all, edge computing was created much earlier than 5G, and 5G is incomplete without edge computing. 5G accelerates the development of the edge computing industry. Why does 5G need edge computing? Well, it needs edge computing to reduce the air interface latency to less than 1 ms. Why isn’t edge computing important for 4G? This is due to the difference between 4G and 5G architectures. As seen in the preceding architecture analysis, the 5G architecture contains a new component, User Plane Function (UPF). The physical location of this component must be determined flexibly to implement the proximity forwarding of business traffic and edge computing. The following figure shows an ideal edge computing-based 5G architecture.

Original Source:

Follow me to keep abreast with the latest technology news, industry insights, and developer trends.